Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cells ; 11(6)2022 03 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1760407

RESUMO

A distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets. A detailed functional characterization of many lysosomal channels and transporters is lacking, mainly due to technical difficulties in applying the standard patch-clamp technique to these small intracellular compartments. In this review, we focus on current methods used to unravel the functional properties of lysosomal ion channels and transporters, stressing their advantages and disadvantages and evaluating their fields of applicability.


Assuntos
Canais Iônicos , Doenças por Armazenamento dos Lisossomos , Humanos , Membranas Intracelulares/metabolismo , Canais Iônicos/metabolismo , Íons/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Técnicas de Patch-Clamp
2.
Virology ; 567: 1-14, 2022 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1628759

RESUMO

The coronavirus nucleocapsid (N) protein comprises two RNA-binding domains connected by a central spacer, which contains a serine- and arginine-rich (SR) region. The SR region engages the largest subunit of the viral replicase-transcriptase, nonstructural protein 3 (nsp3), in an interaction that is essential for efficient initiation of infection by genomic RNA. We carried out an extensive genetic analysis of the SR region of the N protein of mouse hepatitis virus in order to more precisely define its role in RNA synthesis. We further examined the N-nsp3 interaction through construction of nsp3 mutants and by creation of an interspecies N protein chimera. Our results indicate a role for the central spacer as an interaction hub of the N molecule that is partially regulated by phosphorylation. These findings are discussed in relation to the recent discovery that nsp3 forms a molecular pore in the double-membrane vesicles that sequester the coronavirus replicase-transcriptase.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Membranas Intracelulares/metabolismo , Proteínas do Complexo da Replicase Viral/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Camundongos , Vírus da Hepatite Murina , Mutação , Ligação Proteica , Domínios Proteicos , RNA Viral/biossíntese , Proteínas do Complexo da Replicase Viral/química , Proteínas do Complexo da Replicase Viral/genética , Compartimentos de Replicação Viral/metabolismo
3.
Nucleic Acids Res ; 50(13): 7202-7215, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: covidwho-1598484

RESUMO

Expression of therapeutically important proteins has benefited dramatically from the advent of chemically modified mRNAs that feature decreased lability and immunogenicity. This had a momentous effect on the rapid development of COVID-19 mRNA vaccines. Incorporation of the naturally occurring pseudouridine (Ψ) or N1-methyl-pseudouridine (N1mΨ) into in vitro transcribed mRNAs prevents the activation of unwanted immune responses by blocking eIF2α phosphorylation, which inhibits translation. Here, we report that Ψs in luciferase (Luc) mRNA exacerbate translation pausing in nuclease-untreated rabbit reticulocyte lysate (uRRL) and promote the formation of high-order-ribosome structures. The major deceleration of elongation occurs at the Ψ-rich nucleotides 1294-1326 of Ψ-Luc mRNA and results in premature termination of translation. The impairment of translation is mainly due to the shortage of membranous components. Supplementing uRRL with canine microsomal membranes (CMMs) relaxes the impediments to ribosome movement, resolves collided ribosomes, and greatly enhances full-size luciferase production. CMMs also strongly stimulated an extremely inefficient translation of N1mΨ-Luc mRNA in uRRL. Evidence is presented that translational pausing can promote membrane recruitment of polysomes with nascent polypeptides that lack a signal sequence. Our results highlight an underappreciated role of membrane binding to polysomes in the prevention of ribosome collision and premature release of nascent polypeptides.


Assuntos
COVID-19 , Membranas Intracelulares/metabolismo , Elongação Traducional da Cadeia Peptídica , Pseudouridina , RNA Mensageiro , Animais , Cães , Técnicas In Vitro , Peptídeos/metabolismo , Pseudouridina/análogos & derivados , Pseudouridina/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Coelhos
4.
Viruses ; 13(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: covidwho-1580424

RESUMO

Infectious bronchitis virus (IBV), a gammacoronavirus, is an economically important virus to the poultry industry, as well as a significant welfare issue for chickens. As for all positive strand RNA viruses, IBV infection causes rearrangements of the host cell intracellular membranes to form replication organelles. Replication organelle formation is a highly conserved and vital step in the viral life cycle. Here, we investigate the localization of viral RNA synthesis and the link with replication organelles in host cells. We have shown that sites of viral RNA synthesis and virus-related dsRNA are associated with one another and, significantly, that they are located within a membrane-bound compartment within the cell. We have also shown that some viral RNA produced early in infection remains within these membranes throughout infection, while a proportion is trafficked to the cytoplasm. Importantly, we demonstrate conservation across all four coronavirus genera, including SARS-CoV-2. Understanding more about the replication of these viruses is imperative in order to effectively find ways to control them.


Assuntos
Coronavirus/metabolismo , Membranas Intracelulares/metabolismo , RNA Viral/biossíntese , Animais , Linhagem Celular , Coronavirus/classificação , Coronavirus/crescimento & desenvolvimento , Citoplasma/metabolismo , Humanos , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/metabolismo , RNA de Cadeia Dupla/metabolismo , Compartimentos de Replicação Viral/metabolismo
5.
Viruses ; 12(9)2020 09 22.
Artigo em Inglês | MEDLINE | ID: covidwho-973229

RESUMO

Coronaviruses (CoVs) are enveloped, positive sense, single strand RNA viruses that cause respiratory, intestinal and neurological diseases in mammals and birds. Following replication, CoVs assemble on intracellular membranes including the endoplasmic reticulum Golgi intermediate compartment (ERGIC) where the envelope protein (E) functions in virus assembly and release. In consequence, E potentially contains membrane-modifying peptides. To search for such peptides, the E coding sequence of Mouse Hepatitis Virus (MHV) was inspected for its amino acid conservation, proximity to the membrane and/or predicted amphipathic helices. Peptides identified in silico were synthesized and tested for membrane-modifying activity in the presence of giant unilamellar vesicles (GUVs) consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), sphingomyelin and cholesterol. To confirm the presence of membrane binding peptides identified in the context of a full-length E protein, the wild type and a number of mutants in the putative membrane binding peptide were expressed in Lenti-X-293T mammalian and insect cells, and the distribution of E antigen within the expressing cell was assessed. Our data identify a role for the post-transmembrane region of MHV E in membrane binding.


Assuntos
Vírus da Hepatite Murina/química , Peptídeos/química , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Infecções por Coronavirus , Humanos , Membranas Intracelulares/metabolismo , Camundongos , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/metabolismo , Mutação , Peptídeos/síntese química , Peptídeos/metabolismo , Células Sf9 , Spodoptera , Lipossomas Unilamelares/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA